Interleukin-24 inhibits the plasma cell differentiation program in human germinal center B cells.

نویسندگان

  • Ghyath Maarof
  • Laurence Bouchet-Delbos
  • Hélène Gary-Gouy
  • Ingrid Durand-Gasselin
  • Roman Krzysiek
  • Ali Dalloul
چکیده

Complex molecular mechanisms control B-cell fate to become a memory or a plasma cell. Interleukin-24 (IL-24) is a class II family cytokine of poorly understood immune function that regulates the cell cycle. We previously observed that IL-24 is strongly expressed in leukemic memory-type B cells. Here we show that IL-24 is also expressed in human follicular B cells; it is more abundant in CD27(+) memory B cells and CD5-expressing B cells, whereas it is low to undetectable in centroblasts and plasma cells. Addition of IL-24 to B cells, cultured in conditions shown to promote plasma cell differentiation, strongly inhibited plasma cell generation and immunoglobulin G (IgG) production. By contrast, IL-24 siRNA increased terminal differentiation of B cells into plasma cells. IL-24 is optimally induced by BCR triggering and CD40 engagement; IL-24 increased CD40-induced B-cell proliferation and modulated the transcription of key factors involved in plasma cell differentiation. It also inhibited activation-induced tyrosine phosphorylation of signal transducer and activator of transcription-3 (STAT-3), and inhibited the transcription of IL-10. Taken together, our results indicate that IL-24 is a novel cytokine involved in T-dependent antigen (Ag)-driven B-cell differentiation and suggest its physiologic role in favoring germinal center B-cell maturation in memory B cells at the expense of plasma cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IMMUNOBIOLOGY Interleukin-24 inhibits the plasma cell differentiation program in human germinal center B cells

Complex molecular mechanisms control B-cell fate to become a memory or a plasma cell. Interleukin-24 (IL-24) is a class II family cytokine of poorly understood immune function that regulates the cell cycle. We previously observed that IL-24 is strongly expressed in leukemic memory-type B cells. Here we show that IL-24 is also expressed in human follicular B cells; it is more abundant in CD27 me...

متن کامل

IL-21 and CD40L synergistically promote plasma cell differentiation through upregulation of Blimp-1 in human B cells.

After undergoing Ig somatic hypermutation and Ag selection, germinal center (GC) B cells terminally differentiate into either memory or plasma cells (PCs). It is known that the CD40L and IL-21/STAT3 signaling pathways play critical roles in this process, yet it is unclear how the B cell transcription program interprets and integrates these two types of T cell-derived signals. In this study, we ...

متن کامل

Cutting Edge: Circulating Plasmablasts Induce the Differentiation of Human T Follicular Helper Cells via IL-6 Production

B cells require CD4(+) T follicular helper (Tfh) cells to progress through the germinal center and provide protective Ab responses. In this article, we reveal a reciprocal interaction whereby circulating human plasmablasts are potent inducers of the Tfh cell-differentiation program, including the expression of their key transcription factor Bcl-6. The markedly increased propensity of plasmablas...

متن کامل

Spi-B inhibits human plasma cell differentiation by repressing BLIMP1 and XBP-1 expression.

The terminal differentiation of B cells into antibody-secreting plasma cells is tightly regulated by a complex network of transcription factors. Here we evaluated the role of the Ets factor Spi-B during terminal differentiation of human B cells. All mature tonsil and peripheral blood B-cell subsets expressed Spi-B, with the exception of plasma cells. Overexpression of Spi-B in CD19(+) B cells i...

متن کامل

LKB1 inhibition of NF-κB in B cells prevents T follicular helper cell differentiation and germinal center formation.

T-cell-dependent antigenic stimulation drives the differentiation of B cells into antibody-secreting plasma cells and memory B cells, but how B cells regulate this process is unclear. We show that LKB1 expression in B cells maintains B-cell quiescence and prevents the premature formation of germinal centers (GCs). Lkb1-deficient B cells (BKO) undergo spontaneous B-cell activation and secretion ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Blood

دوره 115 9  شماره 

صفحات  -

تاریخ انتشار 2010